Multiplexed Analysis Using Time-Resolved Near-IR Fluorescence for the Detection of Genomic Material
نویسندگان
چکیده
While fluorescence continues to be an important tool in genomics, new challenges are being encountered due to increased efforts toward miniaturization reducing detection volumes and the need for screening multiple targets simultaneously. We have initiated work on developing time-resolved near-IR fluorescence as an additional tool for the multiplexed analyses of DNA, either for sequencing or mutation detection. We have fabricated simple and compact time-resolved fluorescence microscopes for reading fluorescence from electrophoresis or DNA microarrays. These microscopes consist of solid-state diode lasers and diode detectors (SPADs) and due to their compact size, the optical components and laser head can be mounted on high-speed micro-translational stages to read fluorescence from either multi-channel capillary electrophoresis instruments or microfabricated DNA sorting devices. The detector is configured in a time-correlated single photon counting format to allow acquisition of fluorescence lifetimes on-the-fly during data acquisition in the limit of low counting statistics. In multiplexed analyses, lifetime discrimination serves as a method for dye-reporter identification using only a single readout channel. Also, coupled to multi-color systems, lifetime identification can significantly increase the number of probes monitored in a single instrument. In this work, near-IR fluorescence, including dye-labels and hardware, will be discussed as well as the implementation of near-IR fluorescence in DNA sequencing using slab gel electrophoresis and DNA microarrays.
منابع مشابه
Frequency-encoded laser-induced fluorescence for multiplexed detection in infrared-mediated quantitative PCR.
A frequency-modulated fluorescence encoding method was used as a means to increase the number of fluorophores monitored during infrared-mediated polymerase chain reaction. Laser lines at 488 nm and 561 nm were modulated at 73 and 137 Hz, respectively, exciting fluorescence from the dsDNA intercalating dye, EvaGreen, and the temperature insensitive dye, ROX. Emission was collected in a color-bli...
متن کاملModeling Time Resolved Light Propagation Inside a Realistic Human Head Model
Background: Near infrared spectroscopy imaging is one of the new techniques used for investigating structural and functionality of different body tissues. This is done by injecting light into the medium and measuring the photon intensity at the surface of the tissue.Method: In this paper the different medical applications, various imaging and simulation techniques of NIRS imaging is described. ...
متن کاملDetection of abl/bcr Fusion Gene in Patients Affected by Chronic Myeloid Leukaemia by Dual-Colour Interphase Fluorescence in situ Hybridisation
Conventional cytogenetic is the standard technique for detection of Philadelphia (Ph) chromosome in chronic myeloid leukemia (CML). Evaluation of abelson murine leukemia/breakpoint cluster region (abl/bcr) fusion using dual-colour fluorescence in situ hybridization (D-FISH) is an alternative approach allowing rapid and reliable detection of the disease. We employed the technique of interphase D...
متن کاملL- and D-cysteine functionalized CdS quantum dots as nanosensors for detection of L-morphine and D-methamphetamine
A new method in differentiation of chiral molecules is reported based on the fluorescence quenching of functionalized CdS quantum dots (CdS-QDs) as nanosensor by differing in the chirality of functionalization species. The chemically functionalized CdS-QDs with strong yellow emission were prepared using chiral L-cysteine (L-Cyst) and D-cysteine (D-Cyst) molecules. Then, the functionalized CdS-Q...
متن کاملQuantification and Optimization of Candida albicans DNA in Blood Samples Using Real- Time PCR
Background: Candida albicans (C. albicans) is a major cause of candidaemia in people with impaired immunity. Blood culture is a “gold standard” for candidaemia detection but is time-consuming and relatively insensitive. We established a real-time PCR assay for C. albicans detection in blood by LightCycler PCR and melting curve analysis. Methods: Five milliliter blood samples from...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003